

Building Blocks for Nanotechnology from Spark Ablation

Andreas Schmidt-Ott

Nanoparticle production by exploding a wire ca. 1975

Nanoparticle Production by Spark Ablation (Principle)

Short $(1 - 10 \ \mu s)$ repetitive sparks produce strongly quenced vapor ($\approx 10^7 \ K \ s^{-1}$)

VSP G1 (VSPARTICLE)

VSP G1 (VSPARTICLE)

Spark Generator VSP G1 (VSParticle)

Electric spark ablation (ca. 20000K)

Spark Ablation Features

- •Produces particles of high purity
- •Requires no precursor
- •Works for any conducting or semiconducting material
- Mixes materials
- •Particles are partially charged
- •Can be scaled up
- Impaction printing is possible

Ideal tool for diameter range below 20 nm

This is where properties are strongly size dependent

→ <u>New materials and new</u> <u>devices</u>

vsparticle

Size Control in Spark ablation

J. Feng, G. Biskos, A. Schmidt-Ott, *Sci. Reports* 5, 15788 (2015).

Smallest Sizes: Atomic clusters

Geometrical Mean Diameter from VSPARTICLE model G1 (model calculation)

Size Selection by Differential Mobility Analyzer (DMA)

Mixed (Alloyed) Nanoparticle Formation

A. Muntean et al. in Spark Ablation – Building Blocks for Nanotechnology, ed. by A.Schmidt-Ott, Jenny Stanford Publishing, 2020, ISBN 978-981-4800-82-2

Tabrizi, N. S., Xu, Q., Van Der Pers, N. M. and Schmidt-Ott, A. (2010). Generation of mixed metallic nanoparticles from immiscible metals by spark discharge, *J. Nanopart. Res.*, **12**, pp. 247–259.

Material discovery is all about mixing!

About 80 elements can be converted to nanoparticles by spark ablation

High-Entropy Alloy Nanoparticles

vsparticle

J. Feng, D. Chen, P.V. Pikhitsa, Y. Jung, J. Yang, M. Choi, Unconventional Alloys Confined in Nanoparticles: Building Blocks for New Matter, Matter 3, 1646–1663 (2020).

By mixing, many properties can be tuned! Example: The plasmon resonance

Plasmon resonance is made use of for

- Catalysis
- Photovoltaics
- Sensors
- Photoelectrochemical water splitting
- Photoelectrochemical CO₂ reduction
- Surface enhanced Raman scattering

Absorption spectrum of a Au-Ag alloy, ratio 1:1. (Cattaruzzaa et al., 2003)

M.F.J. Boeije et al. in Spark Ablation – Building Blocks for Nanotechnology, ed. by A.Schmidt-Ott, Jenny Stanford Publishing, 2020, ISBN 978-981-4800-82-2

vsparticle

Mixing Possibilities Using Spark Ablation: Spark Mixing

Pfeiffer, T. V., Feng, J. and Schmidt-Ott, A. (2014). New developments in spark production of nanoparticles, Adv. Powder Technol., 25, pp. 56-70.

Mixing on a nanoscale Generic approach for catalyst production, unique in its flexibility

vsparticle

M.F.J. Boeije et al. in Spark Ablation – Building Blocks for Nanotechnology, ed. by A.Schmidt-Ott, Jenny Stanford Publishing, 2020, ISBN 978-981-4800-82-2

"Spark Coating"

T.V. Pfeiffer, P. Kedia, M.E. Messing, M. Valvo, A. Schmidt-Ott, Precursor-Less Coating of Nanoparticles in the Gas Phase, Materials 8 (2015) 1027-1042,

Spark Coating of PSL Spheres by Gold

T.V. Pfeiffer, P. Kedia, M.E. Messing, M. Valvo, A. Schmidt-Ott, Precursor-Less Coating of Nanoparticles in the Gas Phase, Materials 8 (2015) 1027-1042,

vsparticle

Different Ways of Depositing Nanoparticles from Spark Ablation onto Surfaces

Components for Nanofabrication (VSPARTICLE)

Nanoparticle collection on filter

Estimate of void fraction: 80%

(G.J. Lindquist, D.Y. H. Pui, C.J. Hogan, J. Aerosol Sci. 74 (2014) 42-51.)

vsparticle

VSPARTICLE P1 printer

vsparticle

Printing of catalyst layers by impaction (VSPARTICLE)

Lines of porous ZnO and Au printed with P1

Void fraction ca. 30%

Joost van Ginkel, European Aerosol Conference, 2020

vsparticle

Printing Nanoparticles from Spark Ablation by Electrostatic Focussing (Mansoo Choi Group, Korea)

Applications

Application Domains as Summarized in Spark Ablation Book

	ter an en la completaria des el completaria
Table 1.2	Application examples of particles below 20 nm in diamete

Broad application domain	Specific application examples	Relation to size effect in Table 1.1	Chapter/ Section
A1	A1.1 Improved catalyst	B1	2
Heterogeneous	discovery by optimizing	B2.5	10
catalysis	 Size (down to atomic 	B2.6	1.4.1
	cluster range)	B2.7	1.4.3
	Composition (atomic scale)	B3	1.4.4
	 Composition (nanoscale, co-catalysts) 		
	A1.2 Photocatalytic		
	degradation of airborne		
	contaminants		
	A1.2.1 Preserving ancient artifacts		
	A1.2.2 Fighting the sick		
	building syndrome		
	A1.3 Microfluidic catalysts		
	A1.4 Aerosol catalysis		
A2 Solar	A2.1 Photoelectrochemical	B1.1	12
energy	reaction acceleration	B3.3	1.4.3
conversion	A2.1.1 Water splitting		1.4.7
	A2.1.2 CO ₂ reduction		1.4.8
	(artificial leaf)		
	A2.2 Fuel cells		
	A2.3 Photovoltaic efficiency		
	enhancement		
A3 Chemical	A3.1 Metal oxide sensors	B1.1	9
sensors	A3.1.1 E-nose	B1.2	11
	A3.1.2 Humidity sensing	B1.4	12
	A3.2 Inert metal sensors	B2.5	13
	A3.3 Plasmonic (bio)sensors	B2.6	1.4.1
	A3.4 SERS-based (bio)	B3.1	1.4.2
	sensors	B3.2	1.4.6
		B3.7	8.3
A4 Low-	A4.1 Printed circuits	B2.1	1.4.2
temperature	A4.1.1 Contact lens		1.4.5

Broad application domain	Specific application examples	Relation to size effect in Table 1.1	Chapter/ Section
A5 Antimicrobial, antifungal, antiviral, and cytotoxic agents	A5.1 Toxicity research A5.1.1 Inhalation toxicity A5.1.2 Organ-on-a-chip A5.2 Antibacterial surfaces A5.2.1 Medical implants	B1.3	13 1.4.10
A6 Magnetic materials	A6.1 Magnetic cooling A6.2 Water pollution treatment A6.3 Magnetic oil filtering A6.4 Magnetic cell separation	B3.4	1.4.15
A7. Diagnostics and drug delivery	A7.1 Diagnostics A7.1.1 Lab-on-a-chip A7.1.2 Imaging A7.2 Cancer treatment A7.2.1 Hypothermia A7.2.2 Photothermal (quantum dots)	B1.3 B3.4	13 1.4.10.3
A8 Atomic clusters	A8.1 Self-organized particle growth A8.2 Nanodevices A8.3 New materials composed of "superatoms"	B2.1 B3.5	7 1.4.4.4
A9 Energy storage	A9.1 Batteries A9.2 Supercapacitors A9.3 Hydrogen storage materials	B1.1 B1.2 B1.4	1.4.9 1.4.14
A10. Electronics	A10.1 Magnetic cooling A10.2 LED's A10.3 Conductive paths A10.4 Welding with nanopowders	B2.1 B3.2 B3.4	8 1.4.2 1.4.5
A11. Model aerosol production	A11.1 Filter testing A11.2 Measurement device calibration		14 1.4.13

Broad application domain	Specific application examples	Relation to size effect in Table 1.1	Chapter/ Section
A12.	A12.1 Multimaterial printing	B2.1	2
Lithography	A12.2 All-carbon electronic	B3.2	8
and printing	devices		9
	A12.3 Hybrid metal-carbon- polymer nanosystems A12.4 Soft robotics		1.4.2
A13 Lubricants		B2.9	8.3
			1.4.11
A14 Tracers for high-speed flows		B1	1.4.12
A15 Carbon		B2.4	13
nanotube production		B2.5	1.4.4.3

E.A.J. Rennen, Spark Ablation – Building Blocks for Nanotechnology, ed. by A.Schmidt-Ott, Jenny Stanford Publishing Co., 2020

Applications:

Chemical sensors

Chemiresistive Gas Sensor: NO₂ – detection by WO₃ Nanoparticles

Changes in the resistance of nanoparticulate WO_3 films exposed to 0 and 10 ppm NO_2 in air at 200°C. Inset: Normalized sensitivity of the nanoparticulate films as a function of temperature.

Isaac, N. A., Valenti, M., Schmidt-Ott, A. and Biskos, G. (2016). Characterization of tungsten oxide thin films produced by spark ablation for NO² gas sensing, *Appl. Mater.*, **8**(6), pp. 3933–3939.

Electronic Nose

https://www.elprocus.com/electronic-nose-work/

Colorimetrical Sensor to Predict Tarnishing of Objects

Example 3: Higher speed of chemical reactions: Tarnishing

Applications:

Surface Enhanced Raman Scattering (SERS)

Surface Enhanced Raman Scattering (SERS)

vsparticle

Applications:

Catalysis

Particles from Spark Ablation for Catalysis "Aerosol Catalysis"

SHINERS uses SERS to test catalysts.

C.S. Wondergem, J.J.G. Kromwijk, M. Slagter, W.L. Vrijburg, E.J.M. Hensen, M. Monai, C. Vogt, B.M. Weckhuysen, *In Situ* Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy of Nickel-Catalyzed Hydrogenation Reactions, ChemPhysChem 2020, 21, 625–632

2 nm Ni particles are deposited on plasmonic particles by diffusional deposition

C.S. Wondergem, J.J.G. Kromwijk, M. Slagter, W.L. Vrijburg, E.J.M. Hensen, M. Monai, C. Vogt, B.M. Weckhuysen, *In Situ* Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy of Nickel-Catalyzed Hydrogenation Reactions, ChemPhysChem 2020, 21, 625–632

Conclusions

<u>Spark ablation offers great opportunities for discovery and development of new</u> <u>materials</u>. Examples have been shown for the domains of

- Catalysis
- Chemical sensors
- Surface Enhanced Raman Spectroscopy

(explosives, medical diagnosis, viruses, ...)

Breakthroughs in these domains are to be expected due to the unique features of spark ablation regarding

- Flexibility in composition; unlimited mixing capability!
- Particle size control
- Size range < 20 nm, where size effects occur
- Purity

For more details: Book Ed. by A. Schmidt-Ott, 2020: Spark Ablation – Building Blocks for Nanotechnology (450 pages)

